Sentiment Analysis of Shopee App User Reviews Based on Naïve Bayes Classifier
DOI:
https://doi.org/10.48144/suryainformatika.v15i2.2181Keywords:
Sentiment analysis, Shopee, Naïve Bayes, e-commerceAbstract
Technological developments have made various activities easier, including shopping. Through applications, users can make transactions without having to meet face-to-face with sellers. Although it provides convenience, this service does not always run perfectly. One example of a well-known e-commerce application in Indonesia is Shopee. This study analyzes the Shopee application because it significantly supports the Indonesian economy through digitizing trade. Data from 3,000 Shopee reviews obtained from the Google Play Store website in 2025 were analyzed using Natural Language Processing with the Naïve Bayes method, classifying reviews into positive and negative sentiment categories. From the labeling results, text from each sentiment category was extracted to generate essential and valuable information for decision-making. The sentiment classification using the Naïve Bayes Classifier achieved an accuracy rate of 81.30%. The findings of this study can serve as a foundation for enhancing customer satisfaction and comfort, as well as improving the quality of Shopee’s products and services, in line with consumer expectations.
References
Affifa, “Melihat Pangsa Pasar E-commerce Asia Tenggara, dengan Shopee Memimpin,” CUBE. [Online]. Available: https://cube.asia/read/ecommerce-market-share-shopee-leads-the-pack/
O. N. Julianti, N. Suarna, and W. Prihartono, “Penerapan Natural Language Processing Pada Analisis Sentimen Judi Online Di Media Sosial Twitter,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 2936–2941, 2024, doi: 10.36040/jati.v8i3.9613.
V. No, M. D. Ikhsan, B. Huda, A. Hananto, F. Nurapriani, and V. No, “Infotek : Jurnal Informatika dan Teknologi Analisis Sentimen Ulasan Pengguna Alikasi Traveloka Pada Google Play Store Menggunakan Algoritma Naive Bayes Infotek : Jurnal Informatika dan Teknologi Dengan pesatnya kemajuan internet dan teknologi , aplikasi p,” vol. 8, no. 2, pp. 367–377, 2025.
M. A.-Z. Faradeya and E. R. Subhiyakto, “Klasifikasi Penyakit Gagal Jantung Menggunakan Algoritma Naïve Bayes,” J. Algoritm., vol. 22, no. 1, pp. 115–127, 2025, doi: 10.33364/algoritma/v.22-1.2178.
E. H. Muktafin, K. Kusrini, and E. T. Luthfi, “Analisis Sentimen pada Ulasan Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing,” J. Eksplora Inform., vol. 10, no. 1, pp. 32–42, 2020, doi: 10.30864/eksplora.v10i1.390.
L. O. Sihombing, H. Hannie, and B. A. Dermawan, “Sentimen Analisis Customer Review Produk Shopee Indonesia Menggunakan Algortima Naïve Bayes Classifier,” Edumatic J. Pendidik. Inform., vol. 5, no. 2, pp. 233–242, 2021, doi: 10.29408/edumatic.v5i2.4089.
I. S. K. Idris, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),” Jambura J. Electr. Electron. Eng., vol. 5, no. 1, pp. 32–35, 2023, doi: 10.37905/jjeee.v5i1.16830.
H. Utami, “Analisis Sentimen dari Aplikasi Shopee Indonesia Menggunakan Metode Recurrent Neural Network,” Indones. J. Appl. Stat., vol. 5, no. 1, p. 31, 2022, doi: 10.13057/ijas.v5i1.56825.
N. Huda, F. Habrizons, A. Satriawan, M. Iranda, and T. Pramuda, “Analisis Usability Testing Menggunakan Metode SUS (System Usability Scale) Terhadap Kepuasan Pengguna Aplikasi Shopee,” Simkom, vol. 8, no. 2, pp. 208–220, 2023, doi: 10.51717/simkom.v8i2.158.
N. Nurzaman, N. Suarna, and W. Prihartono, “Analisis Sentimen Ulasan Aplikasi Threads Di Google Playstore Menggunakan Algoritma Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 967–974, 2024, doi: 10.36040/jati.v8i1.8708.
M. Rizqi, A. Rustiawan, and P. T. Prasetyaningrum, “Analisis Sentimen Terhadap Klinik Natasha Skincare di Yogyakarta Dengan Metode Google Review,” J. Inf. Technol. Ampera, vol. 5, no. 1, pp. 2774–2121, 2024, doi: 10.51519/journalita.v5i1.556.
R. Merdiansah, S. Siska, and A. Ali Ridha, “Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan IndoBERT,” J. Ilmu Komput. dan Sist. Inf., vol. 7, no. 1, pp. 221–228, 2024, doi: 10.55338/jikomsi.v7i1.2895.
D. F. Rahman, “Analisis ChatGPT tweet menggunakan EDA dan sentiment analysis: Data pengguna Twitter di Indonesia,” no. Sept., no. September, 2023, [Online]. Available: https://www.researchgate.net/profile/Dzul-Rahman-4/publication/376356578_Analisis_Chatgpt_Tweet_Menggunakan_Eda_Dan_Sentiment_Analysis_Data_Pengguna_Twitter_Di_Indonesia/links/6573ec0ccbd2c535ea0c1c4c/Analisis-Chatgpt-Tweet-Menggunakan-Eda-Dan-Sentiment-A
T. Atha Anastasya, A. Diani Putri Saka, M. Juventus Dappa Deke, and A. Mustika Rizki, “Optimasi Algoritma Svm Dengan Pso Untuk Analisis Sentimen Pada Media Sosial X Terhadap Kinerja Timnas Di Era Shin Tae-Yong,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 1, pp. 384–391, 2024, doi: 10.36040/jati.v9i1.12298.
S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” J. Media Inform. Budidarma, vol. 5, no. 2, p. 406, 2021, doi: 10.30865/mib.v5i2.2835.
S. Wardani, “Analisis Sentimen Data Presiden Jokowi Dengan Preprocessing Normalisasi Dan Stemming Menggunakan Metode Naive Bayes Dan Svm,” J. Din. Inform., vol. 5, no. November, pp. 1–13, 2015.
N. Agustina, D. H. Citra, W. Purnama, C. Nisa, and A. R. Kurnia, “Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 1, pp. 47–54, 2022, doi: 10.57152/malcom.v2i1.195.
G. Noer, “Implementasi Algoritma Naïve Bayes dan TF-IDF Dalam Analisis Sentimen Data Ulasan (Studi Kasus: Ulasan Review Aplikasi E-commerce Shopee di Situs Google …,” Repository.Uinjkt.Ac.Id, 2023, [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/68747%0Ahttps://repository.uinjkt.ac.id/dspace/bitstream/123456789/68747/1/GERALD HALIM AL RASYID NOER-FST.pdf
T. M. Iryana, I. Indriati, and P. P. Adikara, “Analisis Sentimen Masyarakat Terhadap Mass Rapid Transit Jakarta Menggunakan Metode Naïve Bayes Dengan Normalisasi Kata,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 6, pp. 2753–2760, 2021, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/9421
I. H. Kusuma and N. Cahyono, “Analisis Sentimen Masyarakat Terhadap Penggunaan E-Commerce Menggunakan Algoritma K-Nearest Neighbor,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 302–307, 2023, doi: 10.30591/jpit.v8i3.5734.
H. Horacek, “Natural language processing,” Comput. Phys. Commun., vol. 61, no. 1–2, pp. 76–92, 1990, doi: 10.1016/0010-4655(90)90107-C.




