Efektivitas Farmakologi Senyawa Aktif Tumbuhan Mangrove Yang Hidup Di Indonesia


  • Dwi Bagus Pambudi Universitas Muhammadiyah Pekajangan Pekalongan
  • H Haryoto Universitas Muhammadiyah Surakarta




Mangrove, Biodiversity, Phytochemical, Bioactive Compound, Pharmacological


Mangroves are ecologically important plants in marine habitats that occupy the coastlines of several countries. Apart from their primary ecological importance, various parts of mangroves are widely used in traditional medicine and are claimed to be effective in treating various diseases. At present, no comprehensive effort has been made to compile and critically analyze the published literature in view of its ethnopharmacological utility. This review aims to provide a comprehensive overview of the biodiversity and distribution of mangrove plants, ethnopharmacology, phytochemical profiles, and pharmacological activities of mangrove plants used as traditional medicine in Indonesia. The method used is by using literature studies from the Science Direct, Pubmed, and Google Scholar database. Result show that In Indonesia, there are 33 types of mangrove species, all of which are traditionally used as medicine, which are spread throughout the archipelago in Indonesia. Bioactive compounds obtained from mangrove plants include polyphenols, flavonoids, alkaloids, carotenoids, tannins, saponins, steroids, amino acids, carbohydrates, proteins, vitamins etc. This review also shows that the pharmacological activities of mangrove plants in general include antimicrobials (such as antibacterial, antiviral and antifungal), anti-inflammatory, anti-ulcer, antidiarrheal, anticancer, antidiabetic, anti-HIV, antinociceptive, hepatoprotective, antiarthritis, analgesic, antioxidant and cytotoxic activities.


[1] S. Nabeelah Bibi et al., “Ethnopharmacology, phytochemistry, and global distribution of mangroves―A comprehensive review,” Mar. Drugs, vol. 17, no. 4, p. 231, 2019.
[2] W. Rahardi and R. M. Suhardi, “Keanekaragaman hayati dan jasa ekosistem mangrove di Indonesia,” in Prosiding Symbion (Symposium on Biology Education), Prodi Pendidikan Biologi, FKIP, Universitas Ahmad Dahlan, 2016, vol. 27, pp. 500–510.
[3] S. E. Hamilton and D. Casey, “Creation of a high spatio‐temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC‐21),” Glob. Ecol. Biogeogr., vol. 25, no. 6, pp. 729–738, 2016.
[4] M. A. Habib et al., “A review on phytochemical constituents of pharmaceutically important mangrove plants, their medicinal uses and pharmacological activities,” Vedic Res. Int. Phytomedicine, vol. 6, no. 1, pp. 1–9, 2018.
[5] C. Kusmana, “Distribution and current status of mangrove forests in Indonesia,” in Mangrove ecosystems of Asia, Springer, 2014, pp. 37–60.
[6] A. Gurib-Fakim and T. Brendler, Medicinal and aromatic plants of Indian Ocean Islands: Madagascar, Comoros, Seychelles and Mascarenes. Medpharm GmbH Scientific Publishers, 2004.
[7] W. M. Bandaranayake, “Bioactivities, bioactive compounds and chemical constituents of mangrove plants,” Wetl. Ecol. Manag., vol. 10, no. 6, pp. 421–452, 2002.
[8] D. Zhang, J. Wu, S. Zhang, and J. Huang, “Oleanane triterpenes from Aegiceras corniculatum,” Fitoterapia, vol. 76, no. 1, pp. 131–133, 2005.
[9] T. Roome, A. Dar, S. Naqvi, and M. I. Choudhary, “Evaluation of antinociceptive effect of Aegiceras corniculatum stems extracts and its possible mechanism of action in rodents,” J. Ethnopharmacol., vol. 135, no. 2, pp. 351–358, 2011.
[10] D. Ghosh, S. Mondal, and K. Ramakrishna, “Phytochemical properties of a rare mangrove Aegialitis rotundifolia Roxb. leaf extract and its influence on human dermal fibroblast cell migration using wound scratch model,” Natl. J. Physiol. Pharm. Pharmacol., vol. 9, no. 4, pp. 335–342, 2019.
[11] D. R. Kar, M. S. Farhad, and P. K. Sahu, “A review on pharmacological profiles of ethno-medicinal plant: Avicennia alba Blume,” Int J PharmTech Res, vol. 7, pp. 370–373, 2015.
[12] H. Thatoi, D. Samantaray, and S. K. Das, “The genus Avicennia, a pioneer group of dominant mangrove plant species with potential medicinal values: a review,” Front. Life Sci., vol. 9, no. 4, pp. 267–291, 2016.
[13] G. Das, S. Gouda, Y. K. Mohanta, and J. K. Patra, “Mangrove plants: A potential source for anticancer drugs,” 2015.
[14] P. Gawali and B. L. Jadhav, “Antioxidant activity and antioxidant phytochemical analysis of mangrove species Sonneratia alba and Bruguiera cylindrica,” Asian J. Microbiol. Biotechnol. Environ. Sci, vol. 13, no. 2, pp. 257–261, 2011.
[15] R. Pitchaipillai and T. Ponniah, “In vitro antidiabetic activity of ethanolic leaf extract of bruguiera Cylindrica L.–glucose uptake by yeast cells method,” Int. Biol. Biomed. J., vol. 2, no. 4, pp. 171–175, 2016.
[16] I. M. S. Eldeen, J. Ringe, and N. Ismail, “Inhibition of pro-inflammatory enzymes and growth of an induced rheumatoid arthritis synovial fibroblast by Bruguiera cylindrica.,” Int. J. Pharmacol., vol. 15, no. 8, pp. 916–925, 2019.
[17] Z. Huang et al., “Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76,” Phytochemistry, vol. 69, no. 7, pp. 1604–1608, 2008.
[18] S. Sofia and M. M. V Teresa, “INVESTIGATION OF BIOACTIVE COMPOUNDS AND ANTIOXIDANT ACTIVITY OF EXCOECARIA AGALLOCHA, L.,” Int. J. Pharm. Sci. Res., vol. 7, no. 12, p. 5062, 2016.
[19] A. A. Laith and M. Najiah, “Antimicrobial activities of blinding tree, Excoecaria agallocha against selected bacterial pathogens,” J. Microbiol. Antimicrob., vol. 6, no. 2, pp. 29–36, 2014.
[20] E. W. C. Chan, N. Oshiro, M. Kezuka, N. Kimura, K. Baba, and H. T. Chan, “Pharmacological potentials and toxicity effects of Excoecaria agallocha,” J Appl Pharm Sci, vol. 8, no. 5, pp. 166–173, 2018.
[21] L. Ge, Y. Li, K. Yang, and Z. Pan, “Chemical constituents of the leaves of Heritiera littoralis,” Chem. Nat. Compd., vol. 52, no. 4, pp. 702–703, 2016.
[22] R. Christopher, S. S. Nyandoro, M. Chacha, and C. B. De Koning, “A new cinnamoylglycoflavonoid, antimycobacterial and antioxidant constituents from Heritiera littoralis leaf extracts,” Nat. Prod. Res., vol. 28, no. 6, pp. 351–358, 2014.
[23] M. Basyuni, S. Baba, H. Oku, F. Mulia, and Y. Bimantara, “Difference Triterpenoid and Phytosterol Profile between Kandelia candel and K. obovata,” 2019.
[24] M. Muthulingam and K. K. Chaithanya, “Qualitative and quantitative phytochemical analysis and in vitro antioxidant activities of methanolic leaf extract of Rhizophora apiculata Blume,” Drug Inven. Today, vol. 10, no. 3, pp. 3335–3343, 2018.
[25] M. Gao and H. Xiao, “Activity-guided isolation of antioxidant compounds from Rhizophora apiculata,” Molecules, vol. 17, no. 9, pp. 10675–10682, 2012.
[26] S. Sulaiman, D. Ibrahim, J. Kassim, and L. Sheh-Hong, “Antimicrobial and antioxidant activities of condensed tannin from Rhizophora apiculata barks,” J. Chem. Pharm. Res, vol. 3, no. 4, pp. 436–444, 2011.
[27] P. Thirunavukkarasu, S. Asha, T. Ramanathan, and D. K. N. Sudhakar, “Journal of Global Trends in Pharmaceutical Sciences.”
[28] T. K. Sur, A. K. Hazra, D. Bhattacharyya, and A. Hazra, “Antiradical and antidiabetic properties of standardized extract of Sunderban mangrove Rhizophora mucronata,” Pharmacogn. Mag., vol. 11, no. 42, p. 389, 2015.
[29] S. Asad, M. Hamiduzzaman, A. T. M. Z. Azam, M. Ahsan, and M. M. Masud, “Lupeol, oleanic acid & steroids from Sonneratia alba JE Sm (Sonneratiaceae) and antioxidant, antibacterial & cytotoxic activities of its extracts,” Int. J. Adv. Res. Pharm. Bio Sci., vol. 3, no. 1, 2013.
[30] S. Saad, M. Taher, D. Susanti, H. Qaralleh, and A. F. I. B. Awang, “In vitro antimicrobial activity of mangrove plant Sonneratia alba,” Asian Pac. J. Trop. Biomed., vol. 2, no. 6, pp. 427–429, 2012.
[31] S. Surya and N. Hari, “Studies on preliminary phytochemical analysis of some true mangrove species in Kerala,” Int. J. Res. Pharm. Pharm. Sci., vol. 2, no. 3, pp. 15–17, 2017.
[32] S. K. Sadhu, F. Ahmed, T. Ohtsuki, and M. Ishibashi, “Flavonoids from Sonneratia caseolaris,” J. Nat. Med., vol. 60, no. 3, pp. 264–265, 2006.
[33] A. K. Tiwari et al., “Oleanolic acid-an [alpha]-Glucosidase inhibitory and antihyperglycemic active compound from the fruits of Sonneratia caseolaris,” Open Access J. Med. Aromat. Plants, vol. 1, no. 1, p. 19, 2010.
[34] P. Wetwitayaklung, C. Limmatvapirat, and T. Phaechamud, “Antioxidant and anticholinesterase activities in various parts of Sonneratia caseolaris (L.),” Indian J. Pharm. Sci., vol. 75, no. 6, p. 649, 2013.
[35] J. Wu et al., “Xyloccensins Q–V, six new 8, 9, 30-phragmalin ortho ester antifeedants from the Chinese mangrove Xylocarpus granatum,” Tetrahedron, vol. 61, no. 35, pp. 8382–8389, 2005.
[36] Z.-F. Zhou, O. Taglialatela-Scafati, H.-L. Liu, Y.-C. Gu, L.-Y. Kong, and Y.-W. Guo, “Apotirucallane protolimonoids from the Chinese mangrove Xylocarpus granatum Koenig,” Fitoterapia, vol. 97, pp. 192–197, 2014.
[37] S. Baba, H. T. Chan, and M. Kainuma, “Botany, uses, chemistry and bioactivities of mangrove plants III: Xylocarpus granatum. 2016; 14 (1): 1–4,” Ref. Source.
[38] H. Janmanchi, A. Raju, M. S. Degani, M. K. Ray, and M. G. R. Rajan, “Antituberculosis, antibacterial and antioxidant activities of Aegiceras corniculatum, a mangrove plant and effect of various extraction processes on its phytoconstituents and bioactivity,” South African J. Bot., vol. 113, pp. 421–427, 2017.
[39] D. Ghosh, S. Mondal, and K. Ramakrishna, “Pharmacobotanical, physicochemical and phytochemical characterisation of a rare salt-secreting mangrove Aegialitis rotundifolia Roxb.,(Plumbaginaceae) leaves: A comprehensive pharmacognostical study,” South African J. Bot., vol. 113, pp. 212–229, 2017.
[40] G. S. Raju et al., “Assessment of pharmacological activities of two medicinal plant of Bangladesh: Launaea sarmentosa and Aegialitis rotundifolia roxb in the management of pain, pyrexia and inflammation,” Biol. Res., vol. 47, no. 1, pp. 1–11, 2014.
[41] A. R. K. Reddy and J. R. Grace, “Anticancer activity of methanolic extracts of selected mangrove plants,” Int. J. Pharm. Sci. Res., vol. 7, no. 9, p. 3852, 2016.
[42] I. Hasan et al., “Ascertainment of pharmacological activities of Allamanda neriifolia Hook and Aegialitis rotundifolia Roxb used in Bangladesh: An in vitro study,” J. Tradit. Complement. Med., vol. 8, no. 1, pp. 107–112, 2018.
[43] M. O. Aljahdali, M. H. R. Molla, and F. Ahammad, “Compounds identified from marine mangrove plant (Avicennia Alba) as potential antiviral drug candidates against WDSV, an in-silico approach,” Mar. Drugs, vol. 19, no. 5, p. 253, 2021.
[44] D. N. Illian, P. A. Z. Hasibuan, S. Sumardi, A. Nuryawan, R. Wati, and M. Basyuni, “Anticancer Activity of Polyisoprenoids from Avicennia alba Blume. in WiDr Cells,” Iran. J. Pharm. Res. IJPR, vol. 18, no. 3, p. 1477, 2019.
[45] G. Eswaraiah, K. A. Peele, S. Krupanidhi, M. Indira, R. B. Kumar, and T. C. Venkateswarulu, “GC–MS analysis for compound identification in leaf extract of Lumnitzera racemosa and evaluation of its in vitro anticancer effect against MCF7 and HeLa cell lines,” J. King Saud Univ., vol. 32, no. 1, pp. 780–783, 2020.
[46] M. A. Rahman, S. Biswas, V. Bala, A. K. Shill, and U. Bose, “Antidiarrhoeal and antinociceptive activities of leafs Avicennia alba,” Pharmacologyonline, vol. 1, pp. 492–500, 2011.
[47] D. R. Kar, G. Ghosh, P. S. Kumar, and P. K. Sahu, “Analgesic and antipyretic activities of the methanolic extract of aerial parts of Avicennia alba Blume,” Int. J. Pharm Tech Res., vol. 6, pp. 874–879, 2014.
[48] S. K. Das, S. Dash, H. Thatoi, and J. K. Patra, “In vitro α-amylase and α-glucosidase Inhibition, Antioxidant, Anti-Inflammatory Activity and GC-MS Profiling of Avicennia alba Blume,” Comb. Chem. High Throughput Screen., vol. 23, no. 9, pp. 945–954, 2020.
[49] N. W. Mazlan, C. Clements, and R. Edrada-Ebel, “Targeted isolation of anti-trypanosomal naphthofuran-quinone compounds from the mangrove plant Avicennia lanata,” Mar. Drugs, vol. 18, no. 12, p. 661, 2020.
[50] A. V Pronin, L. L. Danilov, A. N. Narovlyansky, and A. V Sanin, “Plant polyisoprenoids and control of cholesterol level,” Arch. Immunol. Ther. Exp. (Warsz)., vol. 62, no. 1, pp. 31–39, 2014.
[51] D. N. Illian, M. Basyuni, R. Wati, and P. A. Z. Hasibuan, “Polyisoprenoids from Avicennia marina and Avicennia lanata inhibit WiDr cells proliferation,” Pharmacogn. Mag., vol. 14, no. 58, p. 513, 2018.
[52] S. Poompozhil and D. Kumarasamy, “Studies on phytochemical constituents of some selected mangroves,” J. Acad. Ind. Res, vol. 2, pp. 590–592, 2014.
[53] P. Lalitha, V. Sachithanandam, N. S. Swarnakumar, and R. Sridhar, “Review on Anti-inflammatory Properties of Mangrove plants,” Asian J. Pharm. Res., vol. 9, no. 4, pp. 273–288, 2019.
[54] S. A. Mahera, S. M. Saifullah, V. U. Ahmad, and F. V Mohammad, “Phytochemical studies on mangrove Avicennia marina,” Pak J Bot, vol. 45, no. 6, pp. 2093–2094, 2013.
[55] N. M. D. Sharief and U. M. V Rao, “Antibacterial and antioxidant activity of Avicennia marina leaf,” J Chem Pharm Res, vol. 6, pp. B252–B256, 2014.
[56] L. Karami, A. Majd, S. Mehrabian, M. Nabiuni, M. Salehi, and S. Irian, “Antimutagenic and anticancer effects of Avicennia marina leaf extract on Salmonella typhimurium TA100 bacterium and human promyelocytic leukaemia HL-60 cells,” Sci Asia, vol. 38, no. 3, pp. 349–355, 2012.
[57] M. Shafie, A. Forghani, and J. Moshtaghiyan, “Anti-inflammatory effects of hydro-alcoholic extracts of mangrove (Avicennia marina) and vitamin C on arthritic rats,” Bull Env. Pharmacol Life Sci, vol. 2, pp. 32–37, 2013.
[58] J. M. Beula, M. Gnanadesigan, P. B. Rajkumar, S. Ravikumar, and M. Anand, “Antiviral, antioxidant and toxicological evaluation of mangrove plant from South East coast of India,” Asian Pac. J. Trop. Biomed., vol. 2, no. 1, pp. S352–S357, 2012.
[59] M. H. Hossain, M. S. I. Howlader, S. K. Dey, A. Hira, and A. Ahmed, “Evaluation of diuretic and neuropharmacological properties of the methanolic extract of Avicennia officinalis l. Leaves from bangladesh,” Int. J. Pharm. Phytopharm. Res, vol. 2, pp. 2–6, 2012.
[60] M. L. Hossain, “Medicinal activity of Avicennia officinalis: Evaluation of phytochemical and pharmacological properties,” Saudi J. Med. Pharm. Sci, vol. 2, pp. 250–255, 2016.
[61] P. Thirunavukkarasu, T. Ramanathan, L. Ramkumar, R. Shanmugapriya, and G. Renugadevi, “The antioxidant and free radical scavenging effect of Avicennia officinalis,” J. Med. Plants Res., vol. 5, no. 19, pp. 4754–4758, 2011.
[62] M. Bakshi and P. Chaudhuri, “Antimicrobial potential of leaf extracts of ten mangrove species from Indian Sundarban,” Int. J. Pharma Bio Sci., vol. 5, no. 1, pp. 294–304, 2014.
[63] S. Sura, J. Anbu, M. Sultan, and B. Uma, “Antiulcer effect of ethanolic leaf extract of Avicennia officinalis,” Pharmacologyonline, vol. 3, pp. 12–19, 2011.
[64] J. K. Patra, N. K. Dhal, and H. N. Thatoi, “In vitro bioactivity and phytochemical screening of Suaeda maritima (Dumort): A mangrove associate from Bhitarkanika, India,” Asian Pac. J. Trop. Med., vol. 4, no. 9, pp. 727–734, 2011.
[65] M. Krishnamoorthy, J. M. Sasikumar, R. Shamna, C. Pandiarajan, P. Sofia, and B. Nagarajan, “Antioxidant activities of bark extract from mangroves, Bruguiera cylindrica (L.) Blume and Ceriops decandra Perr,” Indian J. Pharmacol., vol. 43, no. 5, p. 557, 2011.
[66] K. A. Audah, J. Amsyir, F. Almasyhur, A. M. Hapsari, and H. Sutanto, “Development of extract library from Indonesian biodiversity: exploration of antibacterial activity of mangrove Bruguiera cylindrica leaf extracts,” in IOP Conference Series: Earth and Environmental Science, 2018, vol. 130, no. 1, p. 12025.
[67] Y. Li, S. Yu, D. Liu, P. Proksch, and W. Lin, “Inhibitory effects of polyphenols toward HCV from the mangrove plant Excoecaria agallocha L.,” Bioorg. Med. Chem. Lett., vol. 22, no. 2, pp. 1099–1102, 2012.
[68] M. A. Rahman, A. Ahmed, and I. Z. Shahid, “Phytochemical and pharmacological properties of Bruguiera gymnorrhiza roots extract,” IJPR, 1963.
[69] P. R. Kumari, Y. Kumari, and C. V. Kumari, “In-vitro Pharmacological Evaluation of leaf extracts of a Medicinal Mangrove plant Bruguiera gymnorhiza L,” Res. J. Pharm. Technol., vol. 13, no. 4, pp. 1867–1872, 2020.
[70] S. K. Karimulla and B. P. Kumar, “Antidiabetic and antihyperlipidemic activity of bark of Bruguiera gymnorrhiza on streptozotocin induced diabetic rats,” Asian J Pharm Sci Technol, vol. 1, pp. 4–7, 2011.
[71] R. Seepana, K. Perumal, N. M. Kada, R. Chatragadda, M. Raju, and V. Annamalai, “Evaluation of antimicrobial properties from the mangrove Rhizophora apiculata and Bruguiera gymnorrhiza of Burmanallah coast, South Andaman, India,” J. Coast. Life Med, vol. 4, no. 6, pp. 475–478, 2016.
[72] M. A. Karim et al., “Evaluation of antioxidant, anti-hemolytic, cytotoxic effects and anti-bacterial activity of selected mangrove plants (Bruguiera gymnorrhiza and Heritiera littoralis) in Bangladesh,” Clin. Phytoscience, vol. 6, no. 1, pp. 1–12, 2020.
[73] P. D. Abeysinghe, “Antibacterial activity of some medicinal mangroves against antibiotic resistant pathogenic bacteria,” Indian J. Pharm. Sci., vol. 72, no. 2, p. 167, 2010.
[74] M. Basyuni, L. A. P. Putri, and H. Oku, “Phytomedicinal Investigation from Six Mangrove Species, North Sumatra, Indonesia,” IJMS, vol. 18, pp. 157–164, 2013.
[75] N. Bunyapraphatsara et al., “Pharmacological studies of plants in the mangrove forest,” 2003.
[76] B. Biswas, M. Golder, M. A. Abid, K. Mazumder, and S. K. Sadhu, “Terpenoids enriched ethanol extracts of aerial roots of Ceriops decandra (Griff.) and Ceriops tagal (Perr.) promote diuresis in mice,” Heliyon, vol. 7, no. 7, p. e07580, 2021.
[77] P. Thirunavukkarasu, S. Asha, R. Reddy, D. Priya, R. Hari, and N. Sudhakar, “Phytochemical analysis of medicinal mangrove plant species Ceriops decandra,” Glob. J. Pharmacol., vol. 12, no. 1, pp. 24–30, 2018.
[78] J. Perez, C.-C. SHEN, and C. Y. Ragasa, “Triterpenes from Ceriops Decandra (Griff.) W. Theob.,” Asian J Pharm Clin Res, vol. 10, no. 11, pp. 244–246, 2017.
[79] H. Hossain et al., “Anti-inflammatory and antioxidant activities of the ethanolic extract of Ceriops decandra (Griff.) Ding Hou bark,” Orient. Pharm. Exp. Med., vol. 11, no. 4, pp. 215–220, 2011.
[80] D. Saravanan and M. Radhakrishnan, “Antimicrobial activity of mangrove leaves against drug resistant pathogens,” Int. J. PharmTech Res., vol. 9, no. 1, pp. 141–146, 2016.
[81] S. S. Du et al., “Antifeedant diterpenoids against Tribolium castaneum from the stems and twigs of Ceriops tagal (Rhizophoraceae),” Molecules, vol. 16, no. 7, pp. 6060–6067, 2011.
[82] J.-D. Chen, R.-Z. Yi, Y.-M. Lin, D.-Q. Feng, H.-C. Zhou, and Z.-C. Wang, “Characterization of terpenoids from the root of Ceriops tagal with antifouling activity,” Int. J. Mol. Sci., vol. 12, no. 10, pp. 6517–6528, 2011.
[83] E. W. C. Chan, J. Tangah, M. Kezuka, H. D. Hoan, and C. H. Binh, “Botany, uses, chemistry and bioactivities of mangrove plants II: Ceriops tagal,” ISME/GLOMIS Electron. J., vol. 13, no. 6, 2015.
[84] H.-C. Zhou, N. F. Tam, Y.-M. Lin, Z.-H. Ding, W.-M. Chai, and S.-D. Wei, “Relationships between degree of polymerization and antioxidant activities: A study on proanthocyanidins from the leaves of a medicinal mangrove plant Ceriops tagal,” PLoS One, vol. 9, no. 10, p. e107606, 2014.
[85] V. Sachithanandam et al., “Biological evaluation of gallic acid and quercetin derived from Ceriops tagal: insights from extensive in vitro and in silico studies,” J. Biomol. Struct. Dyn., pp. 1–13, 2020.
[86] N. Arivuselvan, D. Silambarasan, T. Govindan, and K. Kathiresan, “Antibacterial activity of mangrove leaf and bark extracts against human pathogens,” Adv. Biol. Res. (Rennes)., vol. 5, no. 5, pp. 251–254, 2011.
[87] S. C. H. V. A. R. Annam, M. Ankireddy, M. B. Sura, M. G. Ponnapalli, and A. V. S. Sarma, “Epimeric excolides from the stems of Excoecaria agallocha and structural revision of rhizophorin A,” Org. Lett., vol. 17, no. 11, pp. 2840–2843, 2015.
[88] M. K. Shelar, M. J. Patil, and S. S. Bhujbal, “Phytochemical and Pharmacognostical Evaluation of Milky Mangrove Excoecaria agallocha Linn,” Res. J. Pharm. Technol., vol. 12, no. 3, pp. 1289–1293, 2019.
[89] C. A. Poorna, M. S. Resmi, and E. V Soniya, “In vitro antioxidant analysis and the DNA damage protective activity of Leaf extract of the Excoecaria agallocha Linn Mangrove plant,” Agric. Chem. New York InTech, pp. 155–166, 2013.
[90] R. C. Patil et al., “Anti reverse transcriptase and anticancer activity of stem ethanol extracts of Excoecaria agallocha (Euphorbiaceae),” Ceylon J. Sci. (Bio. Sci.), vol. 40, no. 2, pp. 147–155, 2011.
[91] G. Lin et al., “Anti-Inflammatory Effects of Heritiera littoralis Fruits on Dextran Sulfate Sodium-(DSS-) Induced Ulcerative Colitis in Mice by Regulating Gut Microbiota and Suppressing NF-κB Pathway,” Biomed Res. Int., vol. 2020, 2020.
[92] L. Ding, A. Maier, H.-H. Fiebig, W.-H. Lin, G. Peschel, and C. Hertweck, “Kandenols A–E, eudesmenes from an endophytic Streptomyces sp. of the mangrove tree Kandelia candel,” J. Nat. Prod., vol. 75, no. 12, pp. 2223–2227, 2012.
[93] A. K. Shettar and A. B. Vedamurthy, “An in-vitro approach for evaluating anthelmintic activity of Kandelia candel and Rhizophora apiculata,” J Pharmacogn Phytochem, vol. 6, no. 1, pp. 5–9, 2017.
[94] L. D. Dat et al., “Anti-inflammatory Triterpenes and Glyceryl Glycosides from Kandelia candel (L.) Druce,” Nat. Prod. Sci., vol. 21, no. 3, pp. 150–154, 2015.
[95] T. Paul and S. Ramasubbu, “The antioxidant, anticancer and anticoagulant activities of Acanthus ilicifolius L. roots and Lumnitzera racemosa Willd. leaves, from southeast coast of India,” J. Appl. Pharm. Sci, vol. 7, no. 3, pp. 81–87, 2017.
[96] S.-Y. Yu et al., “Components from the leaves and twigs of mangrove Lumnitzera racemosa with anti-angiogenic and anti-inflammatory effects,” Mar. Drugs, vol. 16, no. 11, p. 404, 2018.
[97] S. Ravikumar and M. Gnanadesigan, “Hepatoprotective and antioxidant activity of a mangrove plant Lumnitzera racemosa,” Asian Pac. J. Trop. Biomed., vol. 1, no. 5, pp. 348–352, 2011.
[98] G. Eswaraiah, K. A. Peele, S. Krupanidhi, R. B. Kumar, and T. C. Venkateswarulu, “Studies on phytochemical, antioxidant, antimicrobial analysis and separation of bioactive leads of leaf extract from the selected mangroves,” J. King Saud Univ., vol. 32, no. 1, pp. 842–847, 2020.
[99] R. U. B. Ebana, C. A. Etok, and U. O. Edet, “Phytochemical screening and antimicrobial activity of Nypa fruticans harvested from Oporo River in the Niger Delta Region of Nigeria,” Int. J. Innov. Appl. Stud., vol. 10, no. 4, p. 1120, 2015.
[100] A. H. Sukairi, W. M. A. W. Sabri, S. A. T. W. Yusop, and M. R. Asaruddin, “Phytochemical Screening, Antidiabetic and Antioxidant Properties of Nypa frutican Sap,” Mater. Today Proc., vol. 19, pp. 1738–1744, 2019.
[101] N. A. Yusoff et al., “Antidiabetic and antioxidant activities of Nypa fruticans Wurmb. vinegar sample from Malaysia,” Asian Pac. J. Trop. Med., vol. 8, no. 8, pp. 595–605, 2015.
[102] N. P. Thao, “PHENOLIC CONSTITUENTS FROM THE STEM BARKS OF RHIZOPHORA APICULATA BLUME,” Vietnam J. Sci. Technol., vol. 58, no. 5, p. 517, 2020.
[103] G. Selvaraj, S. Kaliamurthi, and R. Thirugnasambandan, “Effect of glycosin alkaloid from Rhizophora apiculata in non-insulin dependent diabetic rats and its mechanism of action: in vivo and in silico studies,” Phytomedicine, vol. 23, no. 6, pp. 632–640, 2016.
[104] V. V. Prabhu and C. Guruvayoorappan, “Anti-inflammatory and anti-tumor activity of the marine mangrove Rhizophora apiculata,” J. Immunotoxicol., vol. 9, no. 4, pp. 341–352, 2012.
[105] L. S. Hong, D. Ibrahim, and J. Kassim, “Assessment of in vivo and in vitro cytotoxic activity of hydrolysable tannin extracted from Rhizophora apiculata barks,” World J. Microbiol. Biotechnol., vol. 27, no. 11, pp. 2737–2740, 2011.
[106] P. Ragavan, R. S. C. Jayaraj, A. Saxena, P. M. Mohan, and K. Ravichandran, “Taxonomical Identity of Rhizophora× annamalayana Kathir and Rhizophora× lamarckii Montrouz (Rhizophoraceae) in the Andaman and Nicobar Islands, India.,” Taiwania, vol. 60, no. 4, 2015.
[107] N. Suganthy, S. K. Pandian, and K. P. Devi, “Cholinesterase inhibitory effects of Rhizophora lamarckii, Avicennia officinalis, Sesuvium portulacastrum and Suaeda monica: mangroves inhabiting an Indian coastal area (Vellar Estuary),” J. Enzyme Inhib. Med. Chem., vol. 24, no. 3, pp. 702–707, 2009.
[108] K. Satyavani, S. Gurudeeban, V. Manigandan, E. Rajamanickam, and T. Ramanathan, “Chemical compositions of medicinal mangrove species Acanthus ilicifolius, Excoecaria agallocha, Rhizophora apiculata and Rhizophora mucronata,” Curr. Res. Chem., vol. 7, no. 1, pp. 1–8, 2015.
[109] G. K. Chinnaboina, A. M. S. S. Babu, R. Verma, P. Sharma, and B. Shrivastava, “Pharmacological evaluation of ethanolic extract of Rhizophora mucronata flower against streptozotocin-induced diabetic nephropathy in experimental animals,” J. Pharmacogn. Phytochem., vol. 7, no. 5, pp. 381–387, 2018.
[111] K. Chakraborty and V. K. Raola, “Two rare antioxidant and anti-inflammatory oleanenes from loop root Asiatic mangrove Rhizophora mucronata,” Phytochemistry, vol. 135, pp. 160–168, 2017.
[112] N. Suganthy and K. Pandima Devi, “In vitro antioxidant and anti-cholinesterase activities of Rhizophora mucronata,” Pharm. Biol., vol. 54, no. 1, pp. 118–129, 2016.
[113] E. S. Hardoko, Y. E. Puspitasari, and R. Amalia, “Study of ripe Rhizophora mucronata fruit flour as functional food for antidiabetic.,” Int. Food Res. J., vol. 22, no. 3, 2015.
[114] S. Gurudeeban, T. Ramanathan, and K. Satyavani, “Antimicrobial and radical scavenging effects of alkaloid extracts from Rhizophora mucronata,” Pharm. Chem. J., vol. 49, no. 1, pp. 34–37, 2015.
[115] S. Ravikumar and M. Gnanadesigan, “Hepatoprotective and antioxidant properties of Rhizophora mucronata mangrove plant in CCl4 intoxicated rats,” J. Exp. Clin. Med., vol. 4, no. 1, pp. 66–72, 2012.
[116] F. E. Mouafi, S. M. Abdel-Aziz, A. A. Bashir, and A. A. Fyiad, “Phytochemical analysis and antimicrobial activity of mangrove leaves (Avicenna marina and Rhizophora stylosa) against some pathogens,” World Appl. Sci. J, vol. 29, pp. 547–554, 2014.
[117] P. T. T. Huong et al., “A new cycloartane glucoside from Rhizophora stylosa,” Nat. Prod. Commun., vol. 9, no. 9, p. 1934578X1400900909, 2014.
[118] P. Revathi, T. J. Senthinath, P. Thirumalaikolundusubramanian, and N. Prabhu, “An overview of antidiabetic profile of mangrove plants,” Int. J. Pharm. Pharm. Sci., vol. 6, no. 3, pp. 1–5, 2014.
[119] W. T. Wahyuni, L. K. Darusman, and N. K. Surya, “Potency of rhizopora Spp. extracts as antioxidant and inhibitor of acetylcholinesterase,” Procedia Chem., vol. 16, pp. 681–686, 2015.
[120] D. I. Miranti, H. Ichiura, and Y. Ohtani, “The Bioactive Compounds and Antioxidant Activity of Food Products of Rhizophora stylosa Fruit (Coffee and Tea Mangrove),” Int. J. For. Res., vol. 2018, 2018.
[121] T. T. H. Nguyen, K. P. Lam, C. T. K. Huynh, P. K. P. Nguyen, and P. E. Hansen, “CHEMICAL CONSTITUENTS FROM LEAVES OF SONNERATIA ALBA JE SMITH (SONNERATIACEAE),” Sci. Technol. Dev. J., vol. 14, no. 4, pp. 11–17, 2011.
[122] C. Y. Ragasa, V. D. Ebajo Jr, M. Mariquit, H. Emelina, R. B. Mandia, and S. Urban, “Triterpenes and Sterols from Sonneratia alba,” Int J Curr Pharm Rev Res, vol. 6, no. 6, pp. 256–261, 2015.
[123] M. A. Milon, M. A. Muhit, D. Goshwami, M. M. Masud, and B. Begum, “Antioxidant, cytotoxic and antimicrobial activity of Sonneratia alba bark,” Int. J. Pharm. Sci. Res., vol. 3, no. 7, p. 2233, 2012.
[124] N. J. Morada, E. B. Metillo, M. M. Uy, and J. M. Oclarit, “Anti-diabetic polysaccharide from mangrove plant, Sonneratia alba Sm,” in Proceedings of the International Conference on Asia Agriculture and Animal, International Proceedings of Chemical, Biological and Environmental Engineering, 2011, vol. 13, pp. 197–200.
[125] M. Latief, “The Characterization of Active Compound of Pedada Magrove Plants (Sonneratia caseolaris) Which HaveThePotential as Natural Antioxidants,” J. Chem. Nat. Resour., vol. 1, no. 1, pp. 1–11, 2019.
[126] M. S. Munira, M. A. Islam, M. S. Islam, S. F. Koly, M. L. Nesa, and M. A. Muhit, “Phytochemical Screening and Comparative Antioxidant Activities of Fractions Isolated from Sonneratia caseolaris (Linn.) Bark Extracts,” Eur. J Med Plants, 2019.
[127] M. Rahmatullah, M. N. K. Azam, S. Pramanik, S. R. Sania, and R. Jahan, “Antihyperglycemic activity evaluation of rhizomes of Curcuma zedoaria Christm. roscoe and fruits of Sonneratia caseolaris. L. Engl,” Int. J. Pharm Tech Res., vol. 4, pp. 125–129, 2012.
[128] A. Simlai, A. Rai, S. Mishra, K. Mukherjee, and A. Roy, “Antimicrobial and antioxidative activities in the bark extracts of Sonneratia caseolaris, a mangrove plant,” Excli J., vol. 13, p. 997, 2014.
[129] A. K. Barman et al., “Evaluation of antidiabetic potential of extract of sonneratia caseolaris (L.) engl. leaves against alloxan-induced diabetes in mice,” 2021.
[130] M. Munira, S. Islam, and N. Akther, “Estimation of anti-inflammatory, analgesic and thrombolytic activities of Sonneratiacaseolaris Linn.(Family: Sonneratiaceae),” J Anal Pharm Res, vol. 8, no. 1, pp. 20–23, 2019.
[131] B. Bokshi et al., “Bioactivities of Sonneratia Caseolaris (Linn) Leaf and Stem Using Different Solvent Systems,” Biomed. J. Sci. Tech. Res., vol. 31, no. 5, pp. 24578–24582, 2020.
[132] V. Lakshmi et al., “Gedunin and photogedunin of Xylocarpus granatum show significant anti-secretory effects and protect the gastric mucosa of peptic ulcer in rats,” Phytomedicine, vol. 17, no. 8–9, pp. 569–574, 2010.
[133] S. K. Das, D. Samantaray, and H. Thatoi, “Ethnomedicinal, antimicrobial and antidiarrhoeal studies on the mangrove plants of the genus Xylocarpus: A mini review,” J. Bioanal. Biomed, vol. 12, no. 4, 2014.
[134] G. Salini, “Pharmacological profile of mangrove endophytes-a review,” Int. J. Pharm. Pharm. Sci., pp. 6–15, 2015.
[135] S. K. Das, D. Samantaray, S. K. Sahoo, S. K. Pradhan, L. Samanta, and H. Thatoi, “Bioactivity guided isolation of antidiabetic and antioxidant compound from Xylocarpus granatum J. Koenig bark,” 3 Biotech, vol. 9, no. 5, pp. 1–9, 2019.
[136] J.-L. Ren, X.-P. Zou, W.-S. Li, L. Shen, and J. Wu, “Limonoids containing a C1–O–C29 moiety: Isolation, structural modification, and antiviral activity,” Mar. Drugs, vol. 16, no. 11, p. 434, 2018.
[137] A. Simlai and A. Roy, “Biological activities and chemical constituents of some mangrove species from Sundarban estuary: An overview,” Pharmacogn. Rev., vol. 7, no. 14, p. 170, 2013.
[138] M. T. Islam et al., “Chemical profile and therapeutic potentials of Xylocarpus moluccensis (Lam.) M. Roem.: A literature-based review,” J. Ethnopharmacol., vol. 259, p. 112958, 2020.
[139] S. Raja and K. Ravindranadh, “A complete profile on Xylocarpus moluccensis: traditional uses, pharmacological activities and phytoconstituents,” World J. Pharm. Sci., pp. 1770–1777, 2014.
[140] S. J. Uddin, I. D. Grice, and E. Tiralongo, “Cytotoxic effects of Bangladeshi medicinal plant extracts,” Evidence-Based Complement. Altern. Med., vol. 2011, 2011.
[141] A. A. Prihanto, “Cytotoxic, antioxidant and antibacterial activity of methanol extract of Xylocarpus moluccensis fruit husk,” in Proceeding of The International Conference on Basic Science held at Malang, Indonesia: Galaxy Science publisher, 2011, pp. 2–5.
[142] I. M. S. Eldeen, H. Mohamed, W. N. Tan, J. Y. F. Siong, Y. Andriani, and T. S. Tengku-Muhammad, “Cyclooxygenase, 5-lipoxygenase and acetylcholinesterase inhibitory effects of fractions containing, α-guaiene and oil isolated from the root of Xylocarpus moluccensis,” Res J Med Plant, vol. 10, no. 4, pp. 286–294, 2016.
[143] G.-S. Chaudhry et al., “Xylocarpus moluccensis induces cytotoxicity in human hepatocellular carcinoma HepG2 cell line via activation of the extrinsic pathway,” Asian Pacific J. Cancer Prev., vol. 22, no. S1, pp. 17–24, 2021.
[144] A. K. Srivastava et al., “Antihyperglycaemic and antidyslipidemic activities in ethyl acetate fraction of fruits of marine mangrove Xylocarpus moluccensis,” Int. J. Pharm. Pharm. Sci., vol. 6, no. 1, pp. 809–826, 2014.